Shallow n^+/p^+ junction formation using plasma immersion ion implantation for CMOS Technology

Kilho Lee⁺, Jai-Hoon Sim^{*}, Yujun Li^{*}, Woo-Tag Kang⁺, Rajeev Malik⁺, Rajesh Rengarajan⁺, Susan Chaloux^{*}, James Bernstein[#], and Peter Kellerman[#]

[†]Infineon Technologies Corp. at IBM Microelectronics Semiconductor R&D Center, 2070 Route 52, Hopewell Junction, NY 12533, USA (Tel) 1-845-892-3331, (Fax) 1-845-892-9068, (e-mail) kilho.lee@infineon.com

^{*}IBM Microelectronics Semiconductor R&D Center, 2070 Route 52, Hopewell Junction, NY 12533, USA

^{*}Axcelis Technologies, Ion Implantation 55 Cherry Hill Drive, Beverly, MA 01915, USA

We present CMOS transistors with n^+/p^+ source/drain extensions doped by AsH3 and BF3 plasma immersion ion implantation (PIII) for the first time. We successfully demonstrate n^+/p^+ shallow junctions with $R_s < 1~k\Omega/sq$ for CMOS devices. No degradation in gate oxide integrity is observed for either AsH3 or BF3 PIII. Compared to conventional ion implantation, PIII provides much better short-channel effects and approximately 50% I_{OFF} reduction for both nMOS and pMOS devices. In particular, the flat threshold voltage roll-off and good performance in buried-channel pMOS device is the best-reported PIII data to date.