A Heteroepitaxial MIM-Ta₂O₅ Capacitor with Enhanced Dielectric Constant for DRAMs of G-bit Generation and beyond

Masahiko Hiratani, Tomoyuki Hamada[†], Shinpei Iijima[‡], Yuzuru Ohji[§], Isamu Asano[‡], Naruhiko Nakanishi[‡] and Shinichiro Kimura

Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo, Japan Advanced Research Laboratory†, Hitachi Ltd., Kokubunji, Tokyo, Japan Semiconductor & Integrated Circuits Group§, Hitachi Ltd., Ome, Tokyo, Japan Elpida Memory, Inc.‡, Sagamihara, Kanagawa, Japan

We demonstrate a novel MIM capacitor with a heteroepitaxial Ta_2O_5 dielectric, the permittivity of which is as high as 50. The heteroepitaxy of Ta_2O_5 on the Ru electrode changes its crystal symmetry from a conventional orthorhombic system to a hexagonal one. One-dimensional Ta-O-Ta chains along the *c*-axis bring about delocalized electrons, large polarizability and thus enhanced permittivity. This technology is promising for the application of Ta_2O_5 to the G-bit DRAMs.