Impact of Low-Standby-Power Device Design on Hot Carrier Reliability

E. Murakami, K. Umeda, T. Yamanaka, S. Kimura, *H. Aono, **K. Makabe,

*K. Okuyama, *Y. Ohji, *Y. Yoshida, *M. Minami, *K. Kuroda, *S. Ikeda, and *K. Kubota

Central Research Laboratory, Hitachi, Ltd., 1-280 Higashi-Koigakubo, Kokubunji, Tokyo 185-8601, Japan,

*Semiconductor Group, Hitachi, Ltd., **Hitachi ULSI Systems co., Ltd.

Hot-carrier (HC) reliability of low-standby-power 0.1 μ m n-MOSFETs is investigated, and design guidelines for channel and halo profiles are described. Heavy channel-doping needed for obtaining high V_{th} enhances HC-injection efficiency, and heavy halo-doping dramatically reduces the lifetime when using substrate-bias (V_{bb}). Shallow-channel and tilted-halo doping is optimal to keep the HC-generation site away from the SiO₂/Si interface and to minimize the vertical electric field that is responsible for secondary impact ionization.