
2015 Symposia on VLSI Technolog

2015 Symposia on VLSI Technology and Circuits June 15th (Monday)

Time	Suzaku III	Suzaku II	Suzaku I	Shunju III	Shunju II	Shunju I
7:30-17:00			Registration (Tech *Press Release Timing: 7:30	nology and Circuits) 0am JST, Monday, June 15th		
	11:30-12:45 Short (Course Lunch Break				
8:30-17:00					ology Short Course d More Moore for IoT	8:30-17:30 2015 Silicon Nanoelectronics Workshop (Day 2)
17:00-17:30						
19:00-22:10			19:00-22:10 2015 Spintronics Workshop on LSI			

ogy and Circuits	June 14th (Sunday)
------------------	--------------------

	Shunju III	Shunju II	Shunju I
•••	d Silicon Nanoelectronics WS) ributed from Monday, June 15th		
		8:30-18:30 2015 Silicon Nanoelectronics Workshop (Poster)	8:30-18:30 2015 Silicon Nanoelectronics Workshop (Day 1)

2015 Symposia on VLSI Technology and Circuits June 16th (Tuesday)

Time	Suzaku III	Suzaku II	Symposia on VLSI Tech Suzaku I
7:30-17:00			Registr
8:20-10:05			
10:30-12:10 12:20-13:30		12:20-13:30 Short Course Lunch Break	
13:30-15:35	10:30-17:10 Circuits Short Course 2 Analog and Digital Circuit Design for IoT Swarms	15:10-15:25 Short Course Coffee Break	10:30-17:10 Circuits Short Cours VLSI Design for Big Data Manage
15:50-17:30			
17:30-18:30	IEEE Solid-States Circuits Society Young Professionals and Grad Students Mentoring and Career coaching event		
19:30-20:00			
		20:00-22:00 Technology	Evening Panel Discussion
20:00-22:00			hat Will be Next?
	Technology Short Course:	June 15th (Monday) 8:30-17:00 / Shunju II	

Technology Short Course: June 15th (Monday) 8:30-17:00 / Shunju II, III 2015 Silicon Nanoelectronics Workshop: June 14th (Sunday) 8:30-18:30, 15th (Monday) 08:30-17:30 / Shunju I (for oral sessions), Shunju II (for posters) 2015 Spintronics Workshop on LSI: June 15th (Monday) 19:00-22:10 / Suzaku I

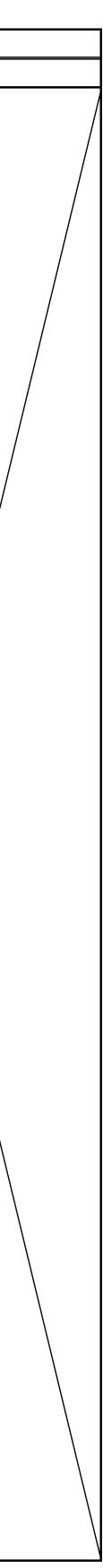
		Shunju III	Shunju II		Shunju I					
stration	(Techno	logy and Circuits)								
	T1-1	8:20-8:45	T1 "Welcome and Plenary Session	า"						
		Welcome and Opening Remarks								
	T1-2	8:45-9:25 (Plenary)								
	AIST	Robotics for Innovation								
	T1-3	9:25-10:05 (Plenary)								
	Google System Challenges and Hardware Requirements for Future Consumer Devices: From Wearable to ChromeBooks and Devices in-between									
	T2-1	10:30-10:55	T2: Highlight							
	12-1		g 2nd Generation Tri-Gate Transistors, 70 nm Gate Pitch	52 nm Metal	Pitch and 0 0/00 um2 SRAM Cells. Ontimi					
	Intel	Power, High Performance and High Density	· •							
	T2-2	10:55-11:20								
	Panasonic	Highly Reliable TaOx ReRAM with Centraliz	ed Filament for 28-nm Embedded Application							
	T2-3	11:20-11:45								
	IBM	High-Mobility High-Ge-Content Si1-xGex-Ol ~10nm Fin Width	PMOS FinFETs with Fins Formed Using 3D Germanium	Condensatior	n with Ge Fraction Up to x~ 0.7, Scaled EOT					
	T2-4	11:45-12:10								
	The Univ. of Tokyo	Design and Demonstration of Reliability-Aw	are Ge Gate Stacks with 0.5 nm EOT							
		T3: (FS) 7nm Node Logic	: Technology and Beyond		T4: Reliability					
	T3-1	13:30-13:55 (Invited)		T4-1	13:30-13:55					
	The Univ. of Tokyo	III-V and Ge/strained SOI Tunneling FET Te	echnologies for Low Power LSIs	Liverpool John Moores Univ.	AC NBTI of Ge pMOSFETs: Impact of Ener Defects on Lifetime Prediction					
	T3-2	13:55-14:20		T4-2	13:55-14:20					
urse 1	Intel	Variation-Tolerant Dense TFET Memory wit	h Low VMIN Matching Low-Voltage TFET Logic	Liverpool John Moores Univ.	A Test-Proven As-Grown-Generation (A-G) Predicting NBTI under Use-Bias					
igement	T3-3	14:20-14:45 (Invited)		T4-3	14:20-14:45					
	imec	Vertical Device Architecture for 5nm and Be	eyond: Device & Circuit Implications	The Univ. of Tokyo	Impact of Random Telegraph Noise on Write St Thin-BOX (SOTB) SRAM Cells at Low Supply V Regime					
	Т3-4	14:45-15:10		T4-4	14:45-15:10					
	Massachusett s Institute of Technology	15-nm Channel Length MoS2 FETs with Sir	ngle- and Double-Gate Structures	Toshiba	Further Investigations on Traps Stabilities in Random Noise and the Application to a Novel Concept Physica (PUF) with Robust Reliabilities					
	T3-5	15:10-15:35		T4-5	15:10-15:35					
	imec		Extension by Room Temperature and Hot Ion 7 (7nm) Technology Relevant Fin Dimensions	Univ. of Minnesota	High Frequency AC Electromigration Lifetin Measurements from a 32nm Test Chip					
	T5-1	T5: (FS) 3D Syste 15:50-16:15 (Invited)	ms and Packaging	T6: Ac T6-1	Ivanced CMOS Technology: Ge FinFET / Com 15:30-16:15					
	TSMC		egrated Fan-Out Wafer-Level-Packaging for Mobile	imec	Strained Germanium Quantum Well p-FinFETs Fabric Pitch Using Replacement Channel, Replacement Meta Germanide-Free Local Interconnect					
	T5-2	16:15-16:40 (Invited)		T6-2	16:15-16:40					
	CEA-LETI	3DVLSI with CoolCube Process: An Alterna	tive Path to Scaling	Purdue Univ.	First Experimental Demonstration of Ge 3D Circuits					
	T5-3	16:40-17:05		T6-3	16:40-17:05					
	CEA-LETI	High Performance Low Temperature Activa Integration of FD, TriGate, FinFET on Insula	ted Devices and Optimization Guidelines for 3D VLSI ator	imec	Characterization of Self-Heating in High-Mo pMOS Devices					
	T5-4	17:05-17:30		T6-4	17:05-17:30					
	EPFL	Ultra Fine-Pitch TSV Technology for Ultra-D	Dense High-Q RF Inductors	Univ. of California	New Industry Standard FinFET Compact M Technology Nodes					
_										
			-20:00	1						
			VLSI Technology ary Celebration							
			ening Panel Discussion	1						
		Semiconductor Industry in 2	020: Evolution or Revolution?							

zed for Low
~8.5Å and
gy Alternating
Model for
ability in Silicon-on-
ability in Onicon on
oltage in Sub-0.4V
oltage in Sub-0.4V
oltage in Sub-0.4V
Telegraph Signal
oltage in Sub-0.4V
oltage in Sub-0.4V
oltage in Sub-0.4V
oltage in Sub-0.4V Telegraph Signal I Unclonable Function
oltage in Sub-0.4V Telegraph Signal I Unclonable Function
oltage in Sub-0.4V Telegraph Signal I Unclonable Function ne pact Model
oltage in Sub-0.4V Telegraph Signal I Unclonable Function ne pact Model cated on 45nm Fin
oltage in Sub-0.4V Telegraph Signal I Unclonable Function ne pact Model
oltage in Sub-0.4V Telegraph Signal I Unclonable Function ne pact Model cated on 45nm Fin
oltage in Sub-0.4V Telegraph Signal I Unclonable Function ne pact Model cated on 45nm Fin al Gate and
oltage in Sub-0.4V Telegraph Signal I Unclonable Function ne pact Model cated on 45nm Fin
oltage in Sub-0.4V Telegraph Signal I Unclonable Function ne pact Model cated on 45nm Fin al Gate and
oltage in Sub-0.4V Telegraph Signal I Unclonable Function ne pact Model cated on 45nm Fin al Gate and FinFET CMOS
oltage in Sub-0.4V Telegraph Signal I Unclonable Function ne pact Model cated on 45nm Fin al Gate and
oltage in Sub-0.4V Telegraph Signal I Unclonable Function ne pact Model cated on 45nm Fin al Gate and FinFET CMOS
oltage in Sub-0.4V Telegraph Signal I Unclonable Function ne pact Model cated on 45nm Fin al Gate and FinFET CMOS
oltage in Sub-0.4V Telegraph Signal I Unclonable Function ne pact Model cated on 45nm Fin al Gate and FinFET CMOS
oltage in Sub-0.4V Telegraph Signal I Unclonable Function ne pact Model cated on 45nm Fin al Gate and FinFET CMOS obility Ge FinFET
oltage in Sub-0.4V Telegraph Signal I Unclonable Function ne pact Model cated on 45nm Fin al Gate and FinFET CMOS obility Ge FinFET
oltage in Sub-0.4V Telegraph Signal I Unclonable Function ne pact Model cated on 45nm Fin al Gate and FinFET CMOS obility Ge FinFET
oltage in Sub-0.4V Telegraph Signal I Unclonable Function ne pact Model cated on 45nm Fin al Gate and FinFET CMOS obility Ge FinFET
oltage in Sub-0.4V Telegraph Signal I Unclonable Function ne pact Model cated on 45nm Fin al Gate and FinFET CMOS obility Ge FinFET
oltage in Sub-0.4V Telegraph Signal I Unclonable Function ne pact Model cated on 45nm Fin al Gate and FinFET CMOS obility Ge FinFET
oltage in Sub-0.4V Telegraph Signal I Unclonable Function ne pact Model cated on 45nm Fin al Gate and FinFET CMOS obility Ge FinFET
oltage in Sub-0.4V Telegraph Signal I Unclonable Function ne pact Model cated on 45nm Fin al Gate and FinFET CMOS obility Ge FinFET
oltage in Sub-0.4V Telegraph Signal I Unclonable Function ne pact Model cated on 45nm Fin al Gate and FinFET CMOS obility Ge FinFET

2015 Symposia on VLSI Technology and Circuits June 17th (Wednesday)

Time	Suzaku III	Suzaku II	Suzaku I		Shunju III Shunju II	Shunju I	I
7:30-17:00			Registration (Te	echnol	ogy and Circuits)	-	
					C1 "Welcome and Plenary Session	n"	
				:1-1	8:30-8:45		
					Welcome and Opening Remarks		
			C1	1-2	8:45-9:25 (Plenary)		
8:30-10:05			Hit	itachi	Profiting from IoT: The Key is Very-Large-Scale Happiness Integration		
			C1	1-3	9:25-10:05 (Plenary)		
			Bo	obert osch mbH	Automated Driving – Impacts on the Vehicle Architecture		
(C3: SARADCs & SC Filter C3-1 10:30-10:55	C2: Image Processing C2-1 10:30-10:55		FS1-1	JFS1: Ultra Low Power for IoT 10:30-10:55 (Invited)	T7: Memory Technolo T7-1 10:30-10:55	ogy: PC RAM
ι	Iniv of A Sharp Programmable Passive Filter	A 0.5-Degree Error 10mW CMOS Image KAIST Sensor-Based Gaze Estimation Processor with Logarithmic Processing	Re	000000	Automotive Low Power Technology for IoT Society	Hitachi 2.8-GB/s-Write and 670-MB/s Vertical Chain-Cell-Type Pha	
C	C3-2 10:55-11:20	C2-2 10:55-11:20	JF	FS1-2	10:55-11:20 (Invited)	T7-2 10:55-11:20	
	Signal-Dependent Charge Recycling for	Univ. of A 23mW Face Recognition Accelerator in Michigan 40nm CMOS with Mostly-Read 5T Memory	im	nec	IoT: the Impact of Things	MacronixGreater than 2-bits/Cell MLCInternationalPhase Change Memory Usin	
C	C3-3 11:20-11:45	C2-3 11:20-11:45	JF	FS1-3	11:20-11:45	T7-3 11:20-11:45	
10:30-12:35 		Univ. of Michigan A 640M pixel/s 3.65mW Sparse Event-Driven Neuromorphic Object Recognition Processor with On-Chip Learning		ualcomm echnologie	Transistor-Interconnect Mobile System-On-Chip Co-Design Method for Holistic Battery Energy Minimization	LEAP A 50-nm 1.2-V GexTe1-x/Sb2 Switching Random-Access M	
C	C3-4 11:45-12:10	C2-4 11:45-12:10	JF	FS1-4	11:45-12:10	T7-4 11:45-12:10	
1	Rokyo A 9.35-ENOB, 14.8 fJ/ConvStep Fully- Passive Noise-Shaping SAR ADC	A 33 nJ/Vector Descriptor Generation KAIST Processor for Low-Power Object Recognition	LE		Sub- μ W Standby Power, <18 μ W/DMIPS@25MHz MCU with Embedded Atom-Switch Programmable Logic and ROM	Operation Fundamentals in 12M CEA-LETI on Innovative Ge-Rich GST Mate Performance	
(C3-5 12:10-12:35	C2-5 12:10-12:35 NTT Media	JF	FS1-5	12:10-12:35 (Invited)	T7-5 12:10-12:35	
		Intelligence Single-Chip 4K 60fps 4:2:2 HEVC Video Laboratorie Encoder LSI with 8K Scalability s	ST tro	TMicroelec onics	Breakthrough Technologies and Reference Designs for New IoT Applications	Macronix International A Novel Self-Converging Wri Phase Change Memory for S Application	
	C5: Low Power Wireless Transceivers C5-1 13:55-14:20	C4: Image Sensors C4-1 13:55-14:20		FS2-1	JFS2: Emerging NVM 13:55-14:20 (Invited)	T8: Process Technology: Co T8-1 13:55-14:20	ontact / Intere
	A 3.5mW 315/400MHz	Hokkaido Image Sensor/Digital Logic 3D Stacked Module			The Progresses of MRAM as a Memory to Save Energy Consumption and Its Potential for Further	STMicroelectr Considerations for Efficient Contact	
	Tunable Radio SoC with Integrated Digital Baseband and MAC Processor in 40nm CMOS	Univ. Featuring Inductive Coupling Channels for High Speed/Low-Noise Image Transfer		oshiba	Reduction	onics Depinning - Impact of MIS Contacts Characteristics	s on 10nm Node n
		C4-2 14:20-14:45 A 0.66e-rms Temporal-Readout-Noise 3D-	JF	FS2-2	14:20-14:45 (Invited)	T8-2 14:20-14:45	
C	Jniv. ofA 1Gb/s Energy Efficient Triple-ChannelCaliforniaUWB-Based Cognitive Radio	TSMC Stacked CMOS Image Sensor with Conditional Correlated Multiple Sampling (CCMS) Technique	Те	echnology	Challenges for High-Density 16Gb ReRAM with 27nm Technology	Applied Ultra-Low Contact Resistivity Materials Contact for nMOSFET	y with Highly D
(13:55-16:00		C4-3 14:45-15:10	JF	FS2-3	14:45-15:10	Т8-3 14:45-15:10 ІВМ Т. Ј.	
	ARM A 0.6V All-Digital Body-Coupled Wakeup Transceiver for IoT Applications	National Tsing Hua Univ. A 0.4V Self-Powered CMOS Imager with 140dB Dynamic Range and Energy Harvesting		enesas lectronics	Low-Power Embedded ReRAM Technology for IoT Applications	Watson Research Center	onnects Beyon
C	C5-4 15:10-15:35	C4-4 15:10-15:35	JF	FS2-4	15:10-15:35	T8-4 15:10-15:35	
	STMicroeleA Self-Powered IPv6 Bidirectional WirelessctronicsSensor & Actuator Network for Indoor Conditions	Tohoku Univ.A Linear Response Single Exposure CMOS Image Sensor with 0.5e- Readout Noise and 76ke- Full Well Capacity			RRAM-Based 7T1R Nonvolatile SRAM with 2x Reduction in Store Energy and 94x Reduction in Restore Energy for Frequent-Off Instant-On Applications	Stanford Univ. Cu Diffusion Barrier: Grapher Ultimate Interconnect Scaling	ene Benchmar າg
		C4-5 15:35-16:00	JF	FS2-5	15:35-16:00	T8-5 15:35-16:00	
1	NationalA 794Mbps 135mW Iterative Detection andTsing HuaDecoding Receiver for 4x4 LDPC-Coded MIMOJniv.Systems in 40nm	A 3D Stacked CMOS Image Sensor with Olympus 16Mpixel Global-Shutter Mode and 2Mpixel 10000fps Mode Using 4 Million Interconnections	Ch	huo Univ.	Reliability Enhancement of 1Xnm TLC for Cold Flash and Millennium Memories	KAIST Improved Electromigration-R by Graphene-Based Capping	
(C7: Optical Links C7-1 16:15-16:40	C6: Bio Monitoring Circuits C6-1 16:15-16:40	Tg	Q_1	T9: Memory Technology: ReRAM 16:15-16:40	T10: Advanced CMOS Technology: Na T10-1 16:15-16:40	Nanowire FET
ι	Jniv. of A 19.6-Gbps CMOS Optical Receiver with	Univ. of California A 16-Channel Wireless Neural Interfacing SoC with RF-Powered Energy-Replenishing Adiabatic			Self-Limited RRAM with ON/OFF Resistance Ratio Amplification	Gate-All-Around NWFETs vs. Tr imec vs. Extensionless and Conventio	tional Junction D
		C6-2 16:40-17:05	То	9-2	16:40-17:05	Controlled EWF Modulation for I T10-2 16:40-17:05	Multi-VT CMOS
	lational	Enabling Closed-Loop Neural Interface: A Bi- Univ. of Directional Interface Circuit with Stimulation			Novel Selector for High Density Non-Volatile Memory with Ultra-Low Holding Voltage and 10^7	IBM T. J.	tod with Minim
16:10-17:55	aiwan Transcoivers in 40nm CMOS	Michigan Artifact Cancellation and Cross-Channel CM Noise Suppression	A*		On/Off Ratio	Watson Si Nanowire CMOS Fabricate Research RMG FinFET Technology Sh Center	
	27-3 17:05-17:30	C6-3 17:05-17:30	ТЭ	9-3	17:05-17:30	T10-3 17:05-17:30	
C		Case Western Reserve Univ. Neurochemical Thermostat: A Neural Interface SoC with Integrated Chemometrics for Closed- Loop Regulation of Brain Dopamine	im	100	a-VMCO: A Novel Forming-Free, Self-Rectifying, Analog Memory Cell with Low-Current Operation, Nonfilamentary Switching and Excellent Variability	Si-cap-free SiGe p-Channel FinFET imec Replacement Metal Gate Process: In Performance Improvement by High-	Interface Trap De
C		C6-4 17:30-17:55	ТЭ	9-4	17:30-17:55	T10-4 17:30-17:55	
		Univ. of MichiganToward 1024-Channel Parallel Neural Recording: Modular Δ - $\Delta\Sigma$ Analog Front-End Architecture with 4.84fJ/C-s•mm2 Energy-Area Product	im	200	A Novel CBRAM Integration Using Subtractive Dry-Etching Process of Cu Enabling High- Performance Memory Scaling Down to 10nm Node	Massachusett s Institute of Technology HoS2 FET Fabrication and M Flexible Electronics	Modeling for L
			·		19:00-21:00		
19:00-21:00					Joint Banquet		

itions of a 3D emory Array
tra High Density sing Scheme
ice Topological-)
e Memory Based High Reliability
2-bits/Cell /lemory (SCM)
onnect
tion via Fermi Level MOSFET DC
oped Si:P
The 7 nm Node
ed to TaN for
u Interconnects
2D Materials
Ts: Junctionless vices with
I Deviation from Performance
ound Transistors in a sity Reduction and m Anneal
rge-Scale


2015 Symposia on VLSI Technology and Circuits June 18th (Thursday)

	0		mposia on VLSI Technology and	•		
Time	Suzaku III	Suzaku II	Suzaku I	Shunju III	Shunju II	Shunju I
8:00-17:00	On Disco and Dalay Looks I have	00. (E0) Outleme for Dir Dete Monomout	Registration (Technol	,		
	C9: Phase and Delay Locked Loops C9-1 8:30-8:55	C8: (FS) Systems for Big Data Management C8-1 8:30-8:55 (Invited)		T11: Advanced CMOS Technolo T11-1 8:30-8:55	ogy: SI FINFET Device & Process	T12: Memory Technology: MTJ and Related DevicesT12-18:30-8:55
1	SeoulAn All-Digital Bang-Bang PLL Using Two-PointNationalModulation and Background Gain Calibration forUniv.Spread Spectrum Clock Generation	Processing		imec RMG nMOS 1st Process Enabling 10x Lower	er Gate Resistivity in N7 Bulk FinFETs	Tohoku Univ.Novel Oxygen Showering Process (OSP) for Extreme Damage Suppression of Sub-20nm High Density p- MTJ Array without IBE TreatmentT40.00.55.0.00
	C9-28:55-9:20NationalA Digital Bang-Bang Phase-Locked Loop with Automatic Loop Gain Control and Loop Latency Univ.Univ.Reduction	C8-2 8:55-9:20 Inductively-Powered Wireless Solid-State Drive (SSD) System with Merged Error Correction of High-Speed Non-Contact Data Links and NAND Flash Memory		T11-2 8:55-9:20 High Sigma Measurement of Random Thresh Technology	hold Voltage Variation in 14nm Logic FinFET	T12-28:55-9:20Tohoku Univ.10 nmφ Perpendicular-Anisotropy CoFeB-MgO Magnetic Tunnel Junction with Over 400°C High Thermal Tolerance by Boron Diffusion Control
	C9-3 9:20-9:45 Univ. of Minnesota A 0.4-1.6GHz Spur-Free Bang-Bang Digital PLL in 65nm with a D-Flip-Flop Based Frequency Subtractor Circuit	C8-3 9:20-9:45 Privacy-Protection Solid-State Storage (PP- Chuo Univ. SSS) System: Automatic Lifetime Management of Internet-Data's Right to be Forgotten		T11-39:20-9:45TSMCHigh Voltage I/O FinFET Device Optimization	n for 16nm System-on-a-Chip (SoC) Technology	T12-39:20-9:45Univ. of MinnesotaAn 8-bit Analog-to-Digital Converter Based on the Voltage-Dependent Switching Probability of a Magnetic Tunnel Junction
	C9-4 9:45-10:10 A 450-fs Jitter PVT-Robust Fractional- Resolution Injection-Locked Clock Multiplier	C8-4 9:45-10:10 (Invited) Caching Mechanisms towards Single-Level		T11-4 9:45-10:10		T12-4 9:45-10:10 Demonstration of an MgO Based Anti-Fuse TDK-Headway OTP Design Integrated With a Fully Functional
	Using a DLL-Based Calibrator with Replica- Delay-Cells	Storage Systems for Internet of Things		Research	•	STT-MRAM at the Mbit Level
	C11: Nyquist ADC and DAC C11-1 10:30-10:55	C10 (FS): IoT and Smart Systems C10-1 10:30-10:55 (Invited)		T13: Advanced CMOS Technolog T13-1 10:30-10:55	gy: X-On Insulator (X-OI) Devices	T14: Memory Technology: 3D NAND Flash & Other NVMT14-110:30-10:55
	Texas A&MA 25GS/s 6b TI Binary Search ADC with Univ.Univ.Soft-Decision Selection in 65nm CMOS	Hitachi Embedded Image Recognition Systems for Advanced Safety Vehicles		STMicroelec tronics	e for Ultra-Low Voltage Operation	Macronix A Novel Dichotomic Programming Algorithm International Applied to 3D NAND Flash
	C11-2 10:55-11:20	C10-2 10:55-11:20		T13-2 10:55-11:20	Technology on Silicon-on-Thin-Buried-Oxide (SOTB) for	T14-210:55-11:20SeoulComprehensive Analysis of Retention Characteristics
	Columbia A 3-10fJ/Conv-Step 0.0032mm2 Error- Univ. Shaping Alias-Free Asynchronous ADC	Panasonic High-Level Video Analytics PC Subsystem Using SoC with Heterogeneous Multi-Core Architecture		LEAP Ultra-Low Leakage Applications	Technology on Silicon-on-Thin-Burled-Oxide (SOTB) for	Nationalin 3-D NAND Flash Memory Cells with Tube-TypeUniv.Poly-Si Channel Structure
10:30-12:35	C11-3 11:20-11:45	C10-3 11:20-11:45		T13-3 11:20-11:45		T14-3 11:20-11:45 Low Power 1T DRAM/NVM Versatile Memory
	Univ. of A 6b 46GS/s ADC with >23GHz BW and California Sparkle-Code Error Correction	Univ. of California A Throughput-Agnostic 11.9-13.6GOPS/mW Multi-Signal Classification SoC for Cognitive Radios in 40nm CMOS		Research Compatible InGaAs-on-Insulator MOSFETs of	O): A Novel Concept for Scalable Integration of CMOS- on Large-Area Si Substrates	Chiao Tung Univ. Featuring Steep Sub-60-mV/decade Operation, Fast 20-ns Speed, and Robust 85oC-Extrapolated 1016 Endurance
C		C10-4 11:45-12:10 Harvard A Multi-Chip System Optimized for Insect- Univ. Scale Flapping-Wing Robots		T13-4 11:45-12:10 The Univ. of Tokyo High Hole Mobility Front-Gate InAs/InGaSb-0	OI Single Structure CMOS on Si	T14-411:45-12:10Carnegie Mellon Univ.High Performance, Integrated 1T1R Oxide-Based Oscillator: Stack Engineering for Low-Power
ę	Architecture Architecture C11-5 12:10-12:35	C10-5 12:10-12:35 (Invited)		T13-5 12:10-12:35		T14-5 12:10-12:35
/	A 16-bit 10Gsps Current Steering RF DAC in	NXP Semiconduc tors Sensor-Hub Sweet-Spot Analysis for Ultra- Low-Power Always-on Operation			0 mm InGaAs-OI Substrate, Gate-first, Replacement Contact Pitch	imec Quantitative Endurance Failure Model for Filamentary RRAM
12:45-14:05			12:45-14:05 Luncheon Talk DASSAI: Innovating Sake Brewing with Massive Usage of Data and IT			
	C12: DRAM	JFS3: Advanced Technology and Circuits for IoT		T15: Non-Si Substrates	s: III-V HEMT/FET/TFET	T16: Beyond CMOS and New Concepts
E	40nm CMOS	JFS3-1 14:20-14:45 (Invited) imec Technology Innovation in an IoT Era		Energy-Efficient, Compact Voltage Regulato	ent-Mode High-K Dielectric GaN MOS-HEMTs for ors and RF Power Amplifiers for Low-Power Mobile SoCs	Efficiency
5	C12-2 14:45-15:10 Samsung Electronics A 6.4Gb/s/pin at Sub-1V Supply Voltage TX- Interleaving Technique for Mobile DRAM Interface	JFS3-2 14:45-15:10 Fabrication of a 3000-6-Input-LUTs Embedded and Block-Level Power-Gated Nonvolatile FPGA Univ. Chip Using p-MTJ-Based Logic-in-Memory Structure		T15-214:45-15:10TSMCIn0.53Ga0.47As MOSFETs with High Chann mm Si Substrate	nel Mobility and Gate Stack Quality Fabricated on 300	T16-2 14:45-15:10 Silicon-Compatible Low Resistance S/D Technologies for High-Performance Top-Gate Self- Aligned InGaZnO TFTs with UTBB (Ultra-Thin Body and BOX) Structures
	C12-3 15:10-15:35	JFS3-3 15:10-15:35 Low-Voltage Metal-Fuse Technology Featuring a		T15-3 15:10-15:35		T16-3 15:10-15:35
	Training Circuit for Mobile Applications	Intel 1.6V-Programmable 1T1R Bit Cell with an Integrated 1V Charge Pump in 22nm Tri-gate Process		State Univ. Complimentary Heterojunction Vertical Tunn		Semiconduc 30-nm-Channel-Length C-Axis Aligned Crystalline In- tor Energy Ga–Zn–O Transistors with Low Off-State Leakage Laboratory Current and Steep Subthreshold Characteristics
	A Computer Designed Half Ch 16-Channel	JFS3-4 15:35-16:00 Qualcomm Technologie Holistic Technology Optimization and Key Enablers for 7nm Mobile SoC		T15-4 15:35-16:00 The Pennsylvania Indium Arsenide (InAs) Single and Dual Qua State Univ State Univ		T16-4 15:35-16:00 EPFL Energy Efficient 1-Transistor Active Pixel Sensor (APS) with FD SOI Tunnel FET
 	TSVs C14: Application-Specific IOs	JFS4: 3D and Heterogeneous Integration	C13: Sensors & Bio Imaging	State Univ.		
	C14-1 16:15-16:40 An Efficient and Resilient Ultra-High Speed Galvanic Data Isolator Leveraging Broad-Band	JFS4-1 16:15-16:40 Active-Lite Interposer for 2.5 & 3D	C13-1 16:15-16:40 Univ. of A Self-Referenced VCO-Based Temperature Sensor			
	Instruments Multi Resonant Tank Electro-Magnetic Coupling C14-2 16:40-17:05	Integration	Illinois with 0.034oC/mV Supply Sensitivity in 65nm CMOS C13-2 16:40-17:05			
۔ ۱6:15-17:55	A 100-GbE Reverse Gearbox IC in 40nm KAIST CMOS for Supporting Legacy 10- and 40- GbE Standards		Univ. of A 10.6mm3 Fully-Integrated, Wireless Sensor Michigan Node with 8GHz UWB Transmitter			
(C14-3 17:05-17:30 A 2 7mW/Channel 48-to-1000MHz Direct	JFS4-3 17:05-17:30 Technische 15 dB Conversion Gain, 20 MHz Carrier Universität Frequency AM Receiver in Flexible a-IGZO TFT Technology with Textile Antonnon				
	C14-4 17:30-17:55	DresdenTechnology with Textile AntennasJFS4-417:30-17:55	Ventilation Monitoring System C13-4 17:30-17:55			
T F	The HongA Fully Integrated IEEE 802.15.7 Visible LightKong Univ. ofCommunication Transmitter with On-Chip 8-WSci. &Tech.85% Efficiency Boost LED Driver	Princeton Univ. Reconstruction of Multiple-User Voice Commands Using a Hybrid System Based on Thin-Film Electronics and CMOS	Princeton A Fully Integrated CMOS Fluorescence Biosensor Univ. with On-Chip Nanophotonic Filter			
20:00-22:00	20:00-22:00 Circuits Eve Wearable Electronics: Still an Oasis or Jus	ening Panel Discussion 2 t a Mirage for the Semiconductor Industry?	Circuits Evening Panel Discussion 1 Is University Circuit Design Research and Education Keeping Up with Industry Needs?			

2015 Symposia on VLSI Technology and Circuits June 19th (Friday)

Time		Suzaku III		Suzaku II		Suzaku l
8:00-15:00						
	C17 C17-1	: Low-Power and Secure Design 8:30-8:55	C16-1	C16: Oscillators 8:30-8:55	C15-1	C15: Ultra-High Speed 8:30-8:55
	Univ. of California	A Low-PDP and Low-Area Repeater Using Passive CTLE for On-Chip Interconnects	The Hong Kong Univ. of Sci. &Tech.	A Dithering-Less 54.79-to-63.16GHz DCO with 4-Hz Frequency Resolution Using an Exponentially-Scaling C-2C Switched-Capacitor Ladder		A 32 Gb/s 0.55 mW/Gbps DFE Receiver in 65-nm CM
	C17-2	8:55-9:20	C16-2	8:55-9:20	C15-2	8:55-9:20
8:30-10:10	Univ. of Michigan	1.32GHz High-Throughput Charge- Recovery AES Core with Resistance to DPA Attacks	National Taiwan Univ.	A -194 dBc/Hz FOM Interactive Current-Reused QVCO (ICR-QVCO) with Capacitor-Coupling Self-Switching Sinusoidal Current Biasing (CSSCB) Phase Noise Reduction Technique	Univ. of California	A 40-Gb/s 9.2-mW CMOS
	C17-3	9:20-9:45	C16-3	9:20-9:45	C15-3	9:20-9:45
	Univ. of Michigan	A Robust -40 to 120°C All-Digital True Random Number Generator in 40nm CMOS	Univ. of Michigan	A 99nW 70.4kHz Resistive Frequency Locking On-Chip Oscillator with 27.4ppm/ ^o C Temperature Stability	IBM Research	A 5.9mW/Gb/s 7Gb/s/pin 8-La Crosstalk Cancellation Schem Tap XDFE in 32nm SOI CMO
	C17-4	9:45-10:10	C16-4	9:45-10:10	C15-4	9:45-10:10
	Columbia Univ.	0 to 80°C and 0.6 to 1.2V in a 65nm CMOS	Massachusett s Institute of Tech.	Systems	Univ. of California	A 60Gb/s 173mW Receive CMOS Technology
	C2 C20-1	0: Power Management Circuits 10:30-10:55	C19-1	C19: SRAM and CAM 10:30-10:55	C18-1	C18: Wideband Over-Sa 10:30-10:55
	Univ. of California	A 0.78mW/cm2 Autonomous Thermoelectric Energy-Harvester for Biomedical Sensors	Intel	A 0.094um2 High Density and Aging Resilient 8T SRAM with 14nm FinFET Technology Featuring 560mV VMIN with Read and Write Assist	Texas A&M Univ.	A 75 MHz BW 68dB DR CT-Σ Amplifier Biquad Filter and a E Common-Gate Summing Tec
	C20-2	10:55-11:20	C19-2	10:55-11:20	C18-2	10:55-11:20
	Massachusett s Institute of Tech.	Solar Energy Harvesting System with Integrated Battery Management and Startup Using Single Inductor and 3.2nW Quiescent Power	IBM Research	14nm FinFET Based Supply Voltage Boosting Techniques for Extreme Low Vmin Operation	Oregon State Univ.	A 54mW 1.2GS/s 71.5dB SN Based CT $\Delta\Sigma$ ADC Using Dua Feedback in 65nm CMOS
	C20-3	11:20-11:45	C19-3	11:20-11:45	C18-3	11:20-11:45
10:30-12:35	Seoul National Univ.	A 2.5-V, 160-µJ-Output Piezoelectric Energy Harvester and Power Management IC for Batteryless Wireless Switch (BWS) Applications	Univ. of Michigan	A Reconfigurable Sense Amplifier with 3X Offset Reduction in 28nm FDSOI CMOS	Univ. of Florida	A 7.2 mW 75.3 dB SNDR 10 Modulator Using Gm-C-Based and Digital Integrator
	C20-4	11:45-12:10	C19-4	11:45-12:10	C18-4	11:45-12:10
	Univ. of California	A 144MHz Integrated Resonant Regulating Rectifier with Hybrid Pulse Modulation	Univ. of Michigan	A Configurable TCAM / BCAM / SRAM Using 28nm Push-Rule 6T Bit Cell	MediaTek	A 16nm FinFet 19/39MHz 78/ Aggregated CTSDM ADC for Advanced CCA/NCCA Applica
	C20-5	12:10-12:35	C19-5	12:10-12:35	C18-5	12:10-12:35
	The Hong Kong Univ. of Sci. &Tech.	A 5.5W AC Input Converter-Free LED Driver with 82% Low-Frequency-Flicker Reduction, 88.2% Efficiency and 0.92 Power Factor	Renesas Electronics	1.8 Mbit/mm2 Ternary-CAM Macro with 484 ps Search Access Time in 16 nm Fin-FET Bulk CMOS Technology	Broadcom	A 10/20/30/40 MHz Feed-F Continuous-Time $\Delta\Sigma$ ADC Performance for Radio Ref
	C23: Ad C23-1	vanced Technologies for Processors 13:55-14:20	C22: Hic C22-1	h Speed and High Frequency TX/RX 13:55-14:20	C21: Delt C21-1	a-Sigma Modulators and 13:55-14:20
	Intel	Broadwell : A Family of IA 14nm Processors	Univ. of Texas at Dallas	410-GHz CMOS Imager Using a 4th Sub- Harmonic Mixer with Effective NEP of 0.3 fW/Hz0.5 at 1-kHz Noise Bandwidth	Universidad e Nova de Lisboa	A 0.7 V 256 μW ΔΣ Modula Integrators Achieving 76 dl
	C23-2	14:20-14:45	C22-2	14:20-14:45	C21-2	14:20-14:45
	Univ. of California	A RISC-V Vector Processor with Tightly- Integrated Switched-Capacitor DC-DC Converters in 28nm FDSOI	Univ. of California	A CMOS 4-Channel MIMO Baseband Receiver with 65dB Harmonic Rejection over 48MHz and 50dB Spatial Signal Separation over 3MHz at 1.3mW	Broadcom	A 13-ENOB, 5 MHz BW, 3. Continuous-Time ΔΣ ADC Excess-Loop-Delay Compe SAR Quantizer
	C23-3	14:45-15:10	C22-3	14:45-15:10 A 60GHz Wireless Transceiver Employing	C21-3	14:45-15:10
13:55-16:00	Harvard Univ.	A 16-Core Voltage-Stacked System with an Integrated Switched-Capacitor DC-DC Converter	Panasonic	Hybrid Analog/Digital Beamforming with Interference Suppression for Multiuser Gigabit/s Radio Access	Kapik Integration Toronto	A Low-Power Gm-C-Based ADC in 1.1V 65nm CMOS
	C23-4	15:10-15:35	C22-4	15:10-15:35	C21-4	15:10-15:35
	Aalto Univ.	32-bit CPU with Timing-Error Prevention Supplied from a Prototype 1.55V Li-Ion Battery	Delft Univ. of Technology	A TDD/FDD SAW-Less Superheterodyne Receiver with Blocker-Resilient Band-Pass Filter and Multi-Stage HR in 28nm CMOS	Samsung Electronics	7.4µW Ultra-High Slew-Ra Amplifier Driving 0.1-to-15 >69° Phase Margin
	C23-5	15:35-16:00	C22-5	15:35-16:00	C21-5	15:35-16:00
	IBM Systems	Resonant Clock Mega-Mesh for the IBM z13TM	The Univ. of Texas at Dallas	0.65-0.73THz Quintupler with an On-Chip Antenna in 65-nm CMOS	Delft Univ. of Technology	A Fully Integrated ±5A Cur with ±0.25% Gain Error and C to +85°C
	C26: C26-1	Low-Power Wireline Transceivers 16:15-16:40	C25-1	C25: DC-DC Converters 16:15-16:40	C24-1	C24: Displays and S 16:15-16:40
	Intel	A 0.5-to-0.75V, 3-to-8 Gbps/lane, 385-to-790 fJ/b, Bi-Directional, Quad-Lane Forwarded- Clock Transceiver in 22nm CMOS	Univ. of Michigan	A Fully-Integrated 40-Phase Flying-Capacitance- Dithered Switched-Capacitor Voltage Regulator with 6mV Output Ripple		Hybrid Driver IC for Real-T Compensation of Ultra Hig Display
	C26-2	16:40-17:05	C25-2	16:40-17:05	C24-2	16:40-17:05
16:15-17:55	Broadcom	A 3.8 mW/Gbps Quad-Channel 8.5-13 Gbps Serial Link with a 5-Tap DFE and a 4- Tap Transmit FFE in 28 nm CMOS	NXP Semiconduc tors	A 1W 8-ratio Switched-Capacitor Boost Power Converter in 140nm CMOS with 94.5% Efficiency, 0.5mm Thickness and 8.1mm2 PCB Area	The Hong Kong Univ. of Sci. &Tech.	An AMLED Microdisplay D 1.25-Mb/s VLC Transmitter
	C26-3	17:05-17:30	C25-3	17:05-17:30	C24-3	17:05-17:30
	Univ. of British Columbia	A 1.2-5Gb/s 1.4-2pJ/b Serial Link in 22nm CMOS with a Direct Data-Sequencing Blind Oversampling CDR	Univ. of California	A Battery-Connected 24-Ratio Switched Capacitor PMIC Achieving 95.5%- Efficiency	Univ. of Michigan	Wide Input Range 1.7µW 7 Interface Circuit with 1 Cyc Sub-Ranging
	C26-4	17:30-17:55	C25-4	17:30-17:55	C24-4	17:30-17:55
	Univ. of Illinois	A 2.8mW/Gb/s 14Gb/s Serial Link Transceiver in 65nm CMOS	KAIST	86.55% Peak Efficiency Envelope Modulator for 1.5W 10MHz LTE PA without AC Coupling Capacitor	Univ. of California	A Near-Field Modulation Chop Locked Oscillator Sensor for F Detection at Microwave Frequ

			Olympic I
Devietnetien (/	Shunju III	Shunju II	Shunju I
Registration ((Circuits only)		λ
d Receivers PAM4 1-FIR 2-IIR Tap MOS			
Equalizer			
ane Single-Ended RX with me Using a XCTLE and 56- DS			
er Frontend in 65nm			
ΣΔ Modulator with Single Broadband Low-Power chnique			
NDR 50MHz BW VCO- lal Phase/Frequency			
) MHz BW CT Delta-Sigma ed Noise-Shaped Quantizer			
3/72dB DR Noise-Injected r Configurable LTE cation			
Forward FIR DAC with Robust Blocker eceivers ad Analog Techniques			
lator with Passive RC IB DR in 2 MHz BW			
8.16 mW Multi-Bit in 28 nm CMOS with pensation Embedded in			
d CT-ΔΣ Audio-Band			
ate Pseudo Single-Stage onF Capacitive Load with			
rrent-Sensing System nd 12μA Offset from –40° Sensors			
Time TFT Non-Uniformity gh-Definition AMOLED			
Driver SoC with Built-In er			
1.2kS/s Resistive Sensor cle/Sample Logarithmic			
opping Stabilized Injection- Protein Conformation uency			

